What can we learn from solar wind backscattering off planetary surfaces?

Paul S. Szabo¹, A.R. Poppe¹, Andreas Mutzke², Herbert Biber³, Julian Pichler³, Shahab Fatemi⁴, Noah Jäggi⁵, Audrey Vorburger⁵, André Galli⁵, Peter Wurz⁵, Friedrich Aumayr³

¹ Space Sciences Laboratory, University of California, Berkeley, CA, USA

- ² Max Planck Institute for Plasma Physics (IPP), Greifswald, Germany
- ³ Institute of Applied Physics, Vienna University of Technology (TU Wien), Vienna, Austria

Ibb

TU

WIEN

- ⁴ Department of Physics, Umeå University, Umeå, Sweden
- ⁵ Physics Institute, University of Bern, Bern, Switzerland

Solar wind backscattering observations from the Moon

Protons backscattered as charged particles:

SFRVI

 \rightarrow Kaguya & ARTEMIS: < 1%

TU

WIEN

IAP

IPP

< 1% of SW protons get reflected at unmagnetized regions as charged particles

A.R. Poppe, et al., JGR: Planets 122 (2017), 771

Solar wind backscattering observations from the Moon

Protons backscattered as neutrals:

- → Kaguya & ARTEMIS: < 1% of SW protons get reflected at unmagnetized regions as charged particles
- \rightarrow Chandrayaan-1 & IBEX: 10 20% of SW protons are reflected as energetic neutral atoms (ENAs)

A.R. Poppe, et al., JGR: Planets 122 (2017), 771

TU

WIEN

IAP

IPP

Solar wind backscattering observations from the Moon

- → Information on precipitating ions and the lunar surface is imprinted in backscattered particles.
- \rightarrow Studies allow us to learn about properties of both.

- \rightarrow Kaguya & ARTEMIS:
- < 1% of SW protons get reflected at unmagnetized regions as charged particles
- \rightarrow Chandrayaan-1 & IBEX: 10 20% of SW protons are reflected as energetic neutral atoms (ENAs)

A.R. Poppe, et al., JGR: Planets 122 (2017), 771

ΤL

WIEN

 \rightarrow reflection coefficients of 10 – 20% had not been expected due to the porous regolith

sfrvi

 \rightarrow constant reflection coefficients for all solar zenith angles

TU

WIEN

IAP

 $\boldsymbol{\mathcal{U}}$

A. Vorburger, et. al., JGR Space Phys., 118 (2013), 3937

IPP

T. Tabata, et. al., Radiation Effects, 84 (1984), 45

- reflection coefficients of 10 20% had not been expected due to the porous regolith
- constant reflection coefficients for all solar zenith angles

WIEN

preferential sunwards emission observed

0.4

0.3 Ratio

0.2

0.1 0.0 0

10 20

- \rightarrow reflection coefficients of 10 20% had not been expected due to the porous regolith
- \rightarrow constant reflection coefficients for all solar zenith angles
- → preferential sunwards emission observed
- \rightarrow significant and broad energy loss, related to SW velocity

TU

WIEN

I A P

A. Vorburger, et. al., JGR Space Phys., 118 (2013), 3937

IPP

A. Schaufelberger, et. al., GRL, 38.22 (2011)

0.004

easured angular distribution [1/sr

0.005

0.007

0.009

- \rightarrow reflection coefficients of 10 20% had not been expected due to the porous regolith
- \rightarrow constant reflection coefficients for all solar zenith angles
- → preferential sunwards emission observed
- \rightarrow significant and broad energy loss, related to SW velocity

 \rightarrow Fundamental understanding of these characteristics has been incomplete.

Simulations with SDTrimSP-3D

SSL

erkelev

IPP

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

SDTrimSP-3D

→ Approximates collision cascade as sequence of binary collisions

SERVI

Simulations with SDTrimSP-3D

SDTrimSP-3D

- → Approximates collision cascade as sequence of binary collisions
- \rightarrow 3D structures with voxel geometry
- \rightarrow We implement regolith structures with different porosities

TU

WIEN

IPP

SFRVI

222

IAP

U. Von Toussaint, et al., Physica Scripta 2017, 014056 (2017)

 \rightarrow Reflection coefficient 0.16±0.05 from Chandrayaan-1

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

SS

IPP

TU

WIEN

U

 \rightarrow Reflection coefficient 0.16±0.05 from Chandrayaan-1

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

SS

IPP

TU

WIEN

ZZ ZZ

ี่ไป

 \rightarrow Reflection coefficient 0.16±0.05 from Chandrayaan-1

SERVI

 $\boldsymbol{u}^{\scriptscriptstyle{\mathsf{b}}}$

IAP

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

TU

WIEN

 \rightarrow Reflection coefficient 0.16±0.05 from Chandrayaan-1

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

SS

PU

IPP

TU

WIEN

Z Z L_{ERS}

ี่ไป

 \rightarrow Reflection coefficient 0.16±0.05 from Chandrayaan-1

SERVI

 $\boldsymbol{u}^{\scriptscriptstyle{\mathsf{b}}}$

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

SS

TU

WIEN

 \rightarrow Reflection coefficient 0.16±0.05 from Chandrayaan-1

SERVI

 $\boldsymbol{u}^{{}^{\scriptscriptstyle \mathsf{D}}}$

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

TU

WIEN

ZZ ZR

 \rightarrow Porosity dependence at 60°:

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

TU

WIEN

Z Z L_{ERS}

IAP

U

 \rightarrow Porosity dependence at 60°:

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

TU

WIEN

Z Z L_{ERS}

IAP

U

 \rightarrow Porosity dependence at 60°:

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

TU

WIEN

Z Z L_{ERS}

U

 \rightarrow Porosity dependence at 60°:

TU

WIEN

ZZ Z LERS

ป้

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

 \rightarrow Porosity dependence at 60°:

TU

WIEN

ZZ Z LERS

ป้

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

 \rightarrow Porosity dependence at 60°:

TU

WIEN

SERVI

Z Z L_{ERS}

IAP

ป้

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

 \rightarrow Porosity dependence at 60°:

TU

WIEN

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

IAP

SERVI

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

 \rightarrow Porosity dependence at 60°:

TU

WIEN

SERVI

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

IAP

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

Porosity from reflection coefficients

→ Porosity is a key regolith parameter, affecting thermal and optical properties

- \rightarrow different porosities reported for the Moon:
 - Returned samples: 0.52 ± 0.02 for the upper 15 cm
 - Infrared (Apollo 16 site): 0.83 ± 0.03 for upper mm to cm

 \rightarrow ENA reflection gives porosity for the whole lunar surface

P.S. Szabo, et al., Geophys. Res. Lett. 49, e2022GL101232 (2022).

IPP

TU

WIEN

W. Carrier III, *et. al.*, Cambridge Univ. Press (1991)

B. Hapke and H. Sato, Icarus, 273 (2016), 75

 \rightarrow Preferential backwards scattering:

SERVI

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

Chandrayaan-1

P.S. Szabo, et. al., submitted to JGR Planets (2023)

60° - 75° incidence

A. Schaufelberger, *et. al.*, GRL, 38.22 (2011)

TU

WIEN

ZZ Z LERS

 \rightarrow Preferential backwards scattering:

SERVI

Chanurayadh-1

P.S. Szabo, et. al., submitted to JGR Planets (2023)

60° - 75° incidence

A. Schaufelberger, et. al., GRL, 38.22 (2011)

TU

WIEN

Z Z L_{ERS} U

 \rightarrow Preferential backwards scattering:

SERVI

ZZ ZZ ZERSY

IAP

U

P.S. Szabo, et. al., submitted to JGR Planets (2023)

60° - 75° incidence

A. Schaufelberger, et. al., GRL, 38.22 (2011)

TU

WIEN

 \rightarrow Preferential backwards scattering:

60° - 75° incidence

TU

WIEN

SDTrimSP-3D (regolith)SDTrimSP-3D (flat)Chandrayaan-1

IPP

Precipitation direction (60°)

Side view

SFRVI

222

IAP

 \rightarrow regolith geometry explains the observed scattering directions

ENA scattering energies

 \rightarrow Broad energy spectra observed:

TU

WIEN

Z Z L_{ERS} ป้

IPP

SERVI

Y. Futaana, et. al., JGR Planets, 117.E5 (2012)

SS

relev

ENA scattering energies

 \rightarrow Broad energy spectra observed:

TU

WIEN

Z Z L_{ERS} SERVI

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

Y. Futaana, et. al., JGR Planets, 117.E5 (2012)

SS

zelev

IPP

ENA scattering energies

 \rightarrow Broad energy spectra observed:

TU

WIEN

IPP

→ Energy spectra of ENAs from backscattering are mostly well reproduced

IAP

→ IBEX reported reduced ENA emission for faster SW velocities:

H.O. Funsten, et. al., JGR Planets, 118.2 (2013), 292

SS

elev

IPP

TU

WIEN

Z LERS

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

SERVI

→ IBEX reported reduced ENA emission for faster SW velocities:

H.O. Funsten, et. al., JGR Planets, 118.2 (2013), 292

SS

elev

IPP

TU

WIEN

Z Z L_{ERS} $\boldsymbol{\mathcal{U}}^{\scriptscriptstyle \mathsf{D}}$

SERVI

→ IBEX reported reduced ENA emission for faster SW velocities:

SERVI

 $\boldsymbol{u}^{{}^{\scriptscriptstyle\mathsf{D}}}$

IAP

H.O. Funsten, et. al., JGR Planets, 118.2 (2013), 292

IPP

SS

elev

TU

WIEN

→ IBEX reported reduced ENA emission for faster SW velocities:

 \rightarrow We can reproduce the observed ENA albedo.

TU

WIEN

IAP

 \rightarrow Overall, our model is very well suited for describing the solar-wind-regolith interaction.

H.O. Funsten, et. al., JGR Planets, 118.2 (2013), 292

IPP

Outlook for future lunar ENA studies

- → Scattering angles possibly connected to further regolith properties
- \rightarrow Laboratory measurements use ion backscattering to analyze surface composition
- \rightarrow ENA studies will help to better understand how the solar wind interacts with magnetic anomalies

SFRVI

Y. Futaana, et. al., GRL, 40.2 (2013), 262

IPP

TU

WIEN

Outlook for other planetary bodies

- → BepiColombo will investigate surface precipitation with backscattered ENAs
- → Proton scattering from Phobos is uncertain, ENA measurements could be helpful
- → ENA studies applicable for any airless body

IPP

TU

WIEN

IAP

 \rightarrow We performed SDTrimSP-3D simulations of ion interaction with lunar regolith.

 \rightarrow We performed SDTrimSF

SSL

erkelev

IPP

ERS

 \rightarrow From solar wind proton reflection, we can determine the lunar regolith porosity as 85%.

SERVI

 \boldsymbol{u}^{\flat}

10⁶ Differential Flux j_{ENA} [1 / cm² / eV / sr / s] H reflection ($\alpha = 60^{\circ}$ $v_{SW} = 300 \text{ km/s}$ 0.5 · 10⁵ flat surface 0.4 10^{4} Reflection Coefficient R .0 .0 .0 .0 $\bar{P} = 0.55$ Frc letermine the 10³ ideal stacking lun 10² 10¹ 0.1 $P = 0.85^{+0.15}_{-0.14}$ 10⁰ 0.0 · 0.0 0.8 0.2 1.0 0.4 0.6 Porosity P 10^{-1} 10² 10³ 10^{1} 10⁴ ENA Energy E [eV]

→ The regolith model reproduces major backscattering characteristics at the Moon.

 \rightarrow We performed SDTrimSP-3D simulations of ion interaction with lunar regolith.

From solar wind proton reflection, we can determine the lunar regolith porosity as 85%.

SFRVI

 \rightarrow The regolith model reproduces major backscattering characteristics at the Moon.

222

IAP

TU

WIEN